

# **Data Sheet**

696.D.101.02

Digital Multifunctional Power Meters with Rogowski Coils and LCD Display

# WPM 209 RGW WPM 309 RGW





## Application

The digital **Weigel Power Meters** have been designed to display the electrical parameters in low voltage systems. The meters are suitable for use in 3-phase 3-wire or 3-phase 4-wire systems.

**WPM 209/309 RGW** are equipped with inputs for *Rogowski coils* and are suitable for measurement, display, and data recording, as well as networking via RS485 or Ethernet.

The use of Rogowski coils for current measurement grants a quick and save installation.

The following base types are available:

- WPM 209 RGW RS485 for clamping to DIN rails with RS485
- WPM 209 RGW LAN for clamping to DIN rails with Ethernet
- WPM 309 RGW RS485 for switch gear panels with RS485
- WPM 309 RGW LAN for switch gear panels with Ethernet

The panel meters display the electrical parameters in the system: voltages phase to neutral and phase to phase, currents of the 3 phases, neutral current; active power, reactive power, apparent power and power factor of the 3 phases and in total; frequency; phase sequence; active energy and reactive energy in 4 quadrants (imported/exported, inductive/capacitive); unbalance of powers and energies; maximum values of voltages, currents, powers, and power factor; minimum values of the powers; demand and maximum demand of the currents and powers; harmonics of current and voltage up to the 15<sup>th</sup> harmonics as well as total harmonic distortion (THD). Various ratings are displayed at the same time and can be selected by pressing front-side buttons.

Using the integrated RS485 or Ethernet interface, all measured ratings and the events can be read out and settings can be made. Software for read out and configuration is available via download from www.weigel-messgeraete.de

**WPM 209 RGW RS485** provides a digital output which can be configured as a pulse output or an alarm output.

**WPM 309 RGW** (both variants) provides two digital outputs which can be configured as a pulse outputs or an alarm outputs, as well as a digital input for demand value synchronization.

For **WPM 309 RGW RS485**, an analogous output 0/4 ... 20 mA for a configurable measuring value is optionally available.

Using the front - side buttons, the voltage and current transformer ratios, the system type and communication parameters can be set and the energy counters and demand values can be reset.

## **Functional Principle**

**WPM 209/309 RGW** is a microprocessor-controlled digital measuring device for measuring, calculating, and indicating electrical ratings.

The meter has 3 voltage inputs and 3 current inputs for Rogowski coils to enable simultaneous evaluation of voltage, current and power for all three phases.

## **General Technical Data**

| operating voltage    | 300 V (rated voltage phase to zero) |
|----------------------|-------------------------------------|
| measurement category | CAT III                             |
| pollution level      | 2                                   |

#### Case WPM 209 RGW

| case details       | projecting case clamping to TH 35 DIN<br>rail according to DIN EN 60 715                                                    |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|
| material of case   | plastics, gray                                                                                                              |
| terminals          | screw-terminals                                                                                                             |
| wire cross-section | 1.5 6 mm <sup>2</sup> voltage and current inputs<br>0.14 2.5 mm <sup>2</sup> auxiliary supply, RS 485 and<br>digital output |

| enclosure code     | IP 51 front of case (when mounted in<br>switchboard with min. IP 51)<br>IP 20 terminals                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|
| dimensions WxHxL   | 72 mm x 90 mm x 65 mm                                                                                                          |
| weight             | approx. 0.44 kg                                                                                                                |
| Case WPM 309 RGW   |                                                                                                                                |
| case details       | suitable to be mounted in switch gear panels                                                                                   |
| material of case   | plastics, black                                                                                                                |
| panel fixing       | plastic clips                                                                                                                  |
| terminals          | screw-terminals                                                                                                                |
| wire-cross section | max. 2.5 mm <sup>2</sup> voltage and current inputs<br>max. 1.5 mm <sup>2</sup> auxiliary supply, RS 485 and<br>digital output |
| enclosure code     | IP 54 front of case (when mounted in switchboard with min. IP 54)<br>IP 20 terminals                                           |
| dimensions WxHxL   | 96 mm x 96 mm x 39 mm                                                                                                          |
| weight             | approx. 0.31 kg                                                                                                                |

## **Electrical Data**

| system type                             | 3-phase 3-wire or 3-phase 4-wire system,<br>unbalanced loads                                       |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|
| rated voltage                           | 230/400 V                                                                                          |
| voltage range                           | 10/17 285/495 V (WPM 209 RGW)<br>20/35 300/519 V (WPM 309 RGW)                                     |
| input impedance                         | >1,3 MΩ                                                                                            |
| minimum voltage for<br>FFT calculations | 20/35 V when directly connected<br>(multiplied with VT ratio<br>when connected via VT)             |
| VT ratio                                | adjustable                                                                                         |
| rated current                           | 500; 4,000; 20,000 A adjustable                                                                    |
| current connection                      | via Rogowski coils                                                                                 |
| initial current                         | 0.3 A at rated current 500 A<br>1 A at rated current 4,000 A<br>10 A at rated current 20,000 A     |
| minimum current for<br>FFT calculations | 70 A at rated current 500 A<br>400 A at rated current 4,000 A<br>1,500 A at rated current 20,000 A |
| rated frequency                         | 50/60 Hz                                                                                           |
| frequency range                         | 45 65 Hz                                                                                           |

## **Auxiliary Supply**

auxiliary voltage WPM 209 RGW 85 ... 265 V AC WPM 309 RGW LAN 85 ... 265 V AC WPM 309 RGW RS485 230 V AC ±15%, 115 V AC ±15% on request power consumption WPM 209 RGW LAN 4.5 VA WPM 209 RGW RS485 1.6 VA WPM 309 RGW LAN 5.8 VA WPM 309 RGW RS485 2.7 VA frequency 50/60 Hz

## ±1888

# **Data Sheet**

#### 696.D.101.02

# Digital Multifunctional Power Meters with Rogowski Coils and LCD Display

**Measuring Units and Recordings** 

| Measuring units                                          |        | Phases                  | Recordings                    |
|----------------------------------------------------------|--------|-------------------------|-------------------------------|
| voltages                                                 | U      | L-L and L-N, $\Sigma$   | min./mean/max. <sup>1</sup> ) |
| currents                                                 | I      | L1, L2, L3, Ν, Σ        | min./mean/max. <sup>1</sup> ) |
| active powers                                            | Р      | L1, L2, L3, $\Sigma$    | min./mean/max. <sup>1</sup> ) |
| reactive powers                                          | Q      | L1, L2, L3, Σ           | min./mean/max. <sup>1</sup> ) |
| apparent powers                                          | S      | L1, L2, L3, Σ           | min./mean/max. <sup>1</sup> ) |
| power factor                                             | PF     | L1, L2, L3, Σ           | min./mean/max. <sup>1</sup> ) |
| cos phi +ind/–cap                                        | DPF    | L1, L2, L3              | min./mean/max. <sup>1</sup> ) |
| TANGENT                                                  | TAN    | L1, L2, L3, Σ           | min./mean/max. <sup>1</sup> ) |
| frequency                                                | F      | L1                      | min./mean/max. <sup>1</sup> ) |
| phase sequence                                           | Ph     |                         |                               |
| Harmonics                                                |        |                         |                               |
| voltages harmonics                                       |        | L-L and L-N             | min./mean/max. <sup>1</sup> ) |
| currents harmonics                                       |        | L1, L2, L3, N           | min./mean/max. <sup>1</sup> ) |
| THD voltages                                             |        | L-L and L-N             | min./mean/max. <sup>1</sup> ) |
| THD currents                                             |        | L1, L2, L3, N           | min./mean/max. <sup>1</sup> ) |
| Demand values                                            |        |                         |                               |
| current demands                                          |        | L1, L2, L3, N, $\Sigma$ |                               |
| active power demands                                     |        | L1, L2, L3, Σ           |                               |
| unbalanced active power                                  | er dem | ands                    |                               |
| reactive power demand                                    | s      | L1, L2, L3, Σ           |                               |
| unbalanced reactive po                                   | wer de | emands                  |                               |
| apparent power deman                                     | ds     | L1, L2, L3, $\Sigma$    |                               |
| unbalanced apparent pe                                   | ower d | emands                  |                               |
| Maximum values                                           |        |                         |                               |
| max. voltages                                            | U      | L-L and L-N, $\Sigma$   |                               |
| max. currents                                            | I      | L1, L2, L3, N, $\Sigma$ |                               |
| max. active powers                                       | Р      | L1, L2, L3, $\Sigma$    |                               |
| max. reactive powers                                     | Q      | L1, L2, L3, Σ           |                               |
| max. apparent powers                                     | S      | L1, L2, L3, Σ           |                               |
| max. power factor                                        | PF     | L1, L2, L3, Σ           |                               |
| max. cos phi +ind/-cap                                   | DPF    | L1, L2, L3              |                               |
| max. TANGENT                                             | TAN    | L1, L2, L3, Σ           |                               |
| max. THD voltages                                        |        | L-L and L-N             |                               |
| max. THD currents                                        |        | L1, L2, L3, N           |                               |
| max. current demands                                     |        | L1, L2, L3, Ν, Σ        |                               |
| max. active power dem                                    | ands   | L1, L2, L3, Σ           |                               |
| max. reactive power de                                   | m.     | L1, L2, L3, Σ           |                               |
| max. apparent power de                                   | em.    | L1, L2, L3, Σ           |                               |
| Minimum values                                           |        |                         |                               |
| min. active power                                        | Р      | L1, L2, L3, Σ           |                               |
| min. reactive power                                      | Q      | L1, L2, L3, Σ           |                               |
| min. apparent power                                      | S      | L1, L2, L3, Σ           |                               |
| Counters                                                 |        |                         |                               |
| active energy imported and exported                      | Ρ      | L1, L2, L3, Σ           | energy counter <sup>2</sup> ) |
| unbalanced active ener                                   | gy     |                         | energy counter <sup>2</sup> ) |
| reactive energy inductive and capacitive                 | Q<br>; | L1, L2, L3, Σ           | energy counter <sup>2</sup> ) |
| unbalanced reactive en                                   | ergy   |                         | energy counter <sup>2</sup> ) |
| apparent energy<br>imported and exported                 | S      | L1, L2, L3, Σ           | energy counter <sup>2</sup> ) |
| unbalanced apparent energy energy counter <sup>2</sup> ) |        |                         |                               |
| operating hours                                          | h      |                         |                               |
| measuring hours                                          | h      |                         |                               |

<sup>1</sup>) Up to 24 measuring units can be programmed for recording.
 <sup>2</sup>) Measuring units for energy counters (fixed)

### **4 Quadrants Measurement**



### Display

| display            | LCD display,<br>with backlight (when pressing a button)    |
|--------------------|------------------------------------------------------------|
| display size       | 43 mm x 29 mm (WPM 209 RGW)<br>78 mm x 61 mm (WPM 309 RGW) |
| indication         | 3 rows, 4 digits, symbols                                  |
| operating elements | 4 buttons                                                  |

### Accuracy

| voltages           | 0.2% at 10% 100% of full-scale value                        |
|--------------------|-------------------------------------------------------------|
| currents           | 0.4% at 5% 100% of full-scale value                         |
| currents harmonics | 2% ±2 digits                                                |
| powers             | $0.5\% \pm 0,1\%$ of full-scale value<br>(power factor = 1) |
| frequency          | 0.1% ±1 digit at 45 65 Hz                                   |
| active energy      | class 1 according to IEC/EN 62053–21                        |
| reactive energy    | class 2 according to IEC/EN 62053–23                        |
|                    |                                                             |

### Environmental

| operating temperature<br>range         | –25 +55°C               |
|----------------------------------------|-------------------------|
| storage/transport<br>temperature range | –25 +75°C               |
| relative humidity                      | max. 80% non-condensing |
| vibration strength                     | ±0.075 mm 50 Hz         |
|                                        |                         |

## **Digital Outputs**

| WPM 209 RGW RS485                   |                                                    |  |
|-------------------------------------|----------------------------------------------------|--|
| type                                | 1 opto coupler open-collector (passive)            |  |
| WPM 309 RGW RS485                   | /LAN                                               |  |
| type                                | 2 NPN or PNP opto coupler open-collector (passive) |  |
| maximum values                      | max. 27 V DC, 27 mA                                |  |
| output unit                         | energy adjustable or alarm                         |  |
| pulse length<br>(when pulse output) | 50±2 ms                                            |  |
| max. delay<br>(when alarm output)   | max. 1 s                                           |  |

## **Digital Input**

#### WPM 309 RGW RS485/LAN

| type          | optically isolated           |
|---------------|------------------------------|
| voltage range | 80 265 V AC/DC               |
| input unit    | demand value synchronization |

### Analog Output (on request)

#### WPM 309 RGW RS485 1AO

| type           |                 | optically isolated (active) |
|----------------|-----------------|-----------------------------|
| output current | IA              | load independent DC current |
| rated current  | I <sub>AN</sub> | 0/4 20 mA programmable      |
| load range     | R <sub>A</sub>  | 0 500 Ω                     |

## **RS485** Interface

#### WPM 209/309 RGW RS485

| type           | RS485            |
|----------------|------------------|
| protocol       | MODBUS RTU/ASCII |
| baud rate      | 300 57600 baud   |
| address        | 1 247            |
| RT A<br>1200 B | RS485-USB-       |



## **Ethernet Interface (LAN)**

#### WPM 209/309 RGW LAN

protocol speed

**Standards** 

| EN 55011    | Industrial, scientific and medical equipment –<br>Radio–frequency disturbance characteristics<br>– Limits and methods of measurement |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| IEC 61000-4 | Electromagnetic compatibility (EMC) –<br>Testing and measurement techniques –                                                        |
| -2          | Part 4–2: Electrostatic discharge immunity test.                                                                                     |
| -3          | Part 4–3: Radiated, radio–frequency, electromagnetic field immunity test                                                             |
| -4          | Part 4–4: Electrical fast transient/burst immunity test                                                                              |

10/100 Mbit/s

HTTP, NTP, DHCP, MODBUS TCP

| -5           | 5      | Part 4–5: Surge immunity test                                                                                  |
|--------------|--------|----------------------------------------------------------------------------------------------------------------|
| -6           | 6      | Part 4–6: Immunity to conducted disturbances, induced by radio-frequency fields                                |
| -1           | 11     | Part 4–11: Voltage dips, short interruptions and voltage variations immunity tests                             |
| EN 61000-6-2 |        | Electromagnetic compatibility (EMC) –<br>Part 6–2: Generic standards –<br>Immunity for industrial environments |
| EN 61010     |        | Safety requirements for electrical equipment for measurement, control, and laboratory use –                    |
|              | -1     | Part 1: General requirements                                                                                   |
|              | -2-030 | Part 2–030: Particular requirements for equip-<br>ment having testing or measuring circuits                    |
| EN 61326-1   |        | Electrical measuring, control, and laboratory<br>devices – EMC requirements –<br>Part 1: General requirements  |

## **Terminals**



auxiliary supply U<sub>H</sub>

digital input DI

2 digital outputs DO1/DO2

nputs

Ethernet

| Т. | WPM 209 RGW<br>RS485 | WPM 209 RGW<br>LAN |
|----|----------------------|--------------------|
| 1  | RS485 GND            | -                  |
| 2  | RS485 –              | -                  |
| 3  | RS485 +              | -                  |
| 4  | digital –            | -                  |
| 5  | digital+             | -                  |
| 6  | U <sub>H</sub> L1    | U <sub>H</sub> L1  |
| 7  | U <sub>H</sub> N     | U <sub>H</sub> N   |

#### WPM 309 RGW RS485 Т.

U<sub>H</sub> L1

1

- 2 NC
- 3 U<sub>H</sub> N digital input -/~
- 4 5 NC
- 6 digital input +/~
- RS485 GND 7
- RS485 8
- 9 RS485 +
- 10 analog output +
- analog output GND 11
- 12 digital output NPN 1 + / PNP GND
- digital output NPN 2 + / PNP 1 -13
- digital output NPN GND / PNP 2 -14

#### WPM 309 RGW LAN Т. 1

- U<sub>H</sub> L1
- 2 NC
- 3 U<sub>H</sub> N
- digital input -/~ 4
- 5 NC 6 digital input +/~
- 12 digital output NPN 1 + / PNP GND
- 13 digital output NPN 2 + / PNP 1 -
- digital output NPN GND / PNP 2 -14

## ±1888

# **Data Sheet**

#### 696.D.101.02

# Digital Multifunctional Power Meters with Rogowski Coils and LCD Display

## Connections

4-phase 3-wire system



3-phase 3-wire system

1-phase AC system

## Dimensions









dimensions in mm

## Rogowski Coils WRC 100

#### Application

The **WRC 100** Rogowski coils can be simply attached around a current carrying conductor and fixed by a bayonet connector. A precise winding technique garantees position independance to a great extent and high linearity.

#### **Functional principle**

Rogowski coils have a toroidal winding, in in which a voltage is induced proportional to the current of the embraced conductor.



The output voltage is amplified and analyzed by the measuring device. As the coils do not have a magnetic core, there is no saturation and a wide frequency range is covered.

#### Mechanical data

range

| WRC 100<br>coil length<br>inner diameter | <b>030</b><br>30 cm<br>10 cm                       | <b>045</b><br>45 cm<br>14 cm | <b>070</b><br>70 cm<br>22 cm | <b>090</b><br>90 cm<br>29 cm |
|------------------------------------------|----------------------------------------------------|------------------------------|------------------------------|------------------------------|
| coil diameter                            | 8,3 ±0,2 m                                         | m                            |                              |                              |
| connector                                | bayonet                                            |                              |                              |                              |
| weigth                                   | 150 500 g                                          |                              |                              |                              |
| outer material                           | thermoplas                                         | tics accordir                | ng to UL94-                  | <b>V</b> 0                   |
| connections                              | 2x 0.15 mm                                         | n <sup>2</sup> + shieldin    | g                            |                              |
| cable length                             | 300 cm (sta                                        | andard)                      |                              |                              |
| enclosure code                           | IP67                                               |                              |                              |                              |
| Electrical data                          |                                                    |                              |                              |                              |
| output signal                            | 100 mV / 1                                         | kA bei 50 H                  | z                            |                              |
| coil resistance                          | 70 900 Ω                                           | 2                            |                              |                              |
| positioning error                        | better than                                        | ±1% (with 1                  | 5 mm cable                   | diameter)                    |
| frequency range                          | 40 Hz 20                                           | ) kHz                        |                              |                              |
| operating voltage                        | 1000 V <sub>eff</sub> C<br>600 V <sub>eff</sub> CA | AT III<br>T IV               |                              |                              |
| pollution level                          | 2                                                  |                              |                              |                              |
| test voltage                             | 7400 V <sub>eff</sub> / $^{-1}$                    | 1 min                        |                              |                              |
| Environmental                            |                                                    |                              |                              |                              |
| operating temperature range              | -30 +80°                                           | °C                           |                              |                              |
| storage temperature                      | -40 +80°                                           | °C                           |                              |                              |

### **Ordering Information**

Multifunctional Power Meter with Rogowski coils and LCD display WPM 209 RGW KIT 30 RS485 for clamping to DIN rails with 3 Rogowski coils WRC 100 030 and LCD display with RS485 interface and digital output

WPM 209 RGW KIT 30 LAN for clamping to DIN rails with 3 Rogowski coils WRC 100 030 and LCD display with Ethernet interface

WPM 309 RGW KIT 30 RS485<sup>1</sup>) for switch gear panels with 3 Rogowski coils WRC 100 030 and LCD display with RS485 interface, 2 digital outputs, and 1 digital input

WPM 309 RGW KIT 30 RS485  $(1AO^1)^2$ ) for switch gear panels with 3 Rogowski coils WRC 100 030 and LCD display with RS485 interface, 2 digital outputs, and 1 digital input as well as analog output

WPM 309 RGW KIT 30 LAN<sup>1</sup>) for switch gear panels with 3 Rogowski coils WRC 100 030 and LCD display with Ethernet interface, 2 digital outputs, and 1 digital input

 $^{1})$  digital outputs NPN (standard) or PNP (optional) – please state  $^{2})$  on request

| WRC 100 | Rogowski coils            |
|---------|---------------------------|
| 030     | 30 cm length (standard)   |
| 045     | 45 cm length (on request) |
| 070     | 70 cm length (on request) |
| 090     | 90 cm length (on request) |

#### Ordering Example

WPM 209 RGW KIT 30 RS485 Multifunctional Power Meter for clamping to DIN rails with 3 Rogowski coils WRC 100 030 and LCD display with RS485 interface and digital output

## Weigel Meßgeräte GmbH

 Postfach 720 154 • 90241 Nürnberg • Phone: 0911/42347-0

 Erlenstraße 14 • 90441 Nürnberg • Fax: 0911/42347-39

 Sales:
 Phone: 0911/42347-94

 Internet:
 http://www.weigel-messgeraete.de

 e-mail:
 vertrieb@weigel-messgeraete.de

- specifications subject to change without notice; date of issue 02/17 -

