

Transducers for Phase Angle (cos φ)

Data Sheet

CU 2.2

Application

The microprocessor controlled transducer CU 2.2 produce load independent DC current and DC voltage output signals proportional to the phase angle φ between the applied AC voltage and AC current. The signal can be transmitted over a considerable distance and fed into indicators, recorders, data loggers and/or control systems.

It is possible to connect more than one measuring, recording or control $% \left(1\right) =\left(1\right) \left(1\right) \left($ devices to the output circuit provided the total impedance does not ex-

The CU 2.2 transducer requires an auxiliary power supply. Inputs, outputs and power supply are galvanically isolated from each other. The outputs are short-circuit proof and safe against idling.

The transducers comply with safety requirements and are tested for in-

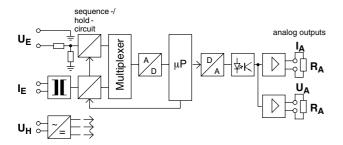
The transducers are designed to be mounted in machines/systems. Regulations for installation of electrical systems and equipment have to

Functional Principle

A transformer in the current circuit and a multiplier in the voltage circuit adapt the signals and pass them via a multiplexer to an A/D converter.

A microprocessor analyzes the digitalized signal in real time. Via a D/A converter and an optocoupler for galvanic isolation the signal is transferred to the output stages

These issue the output quantity as a load independent DC current and a synchronous impressed DC voltage proportional to the phase angle φ of


Optionally, the measured value can be inquired via a serial interface (RS232/RS485), also switching signal can be produced.

Notes

The outputs must not be connected to each other.

If one or both input signals are not applied, the transducer outputs will show the $\cos \varphi = 1$ value.

Block Circuit Diagram

General Technical Data

projecting case clamping to TH 35 DIN case details

rail according to DIN EN 60 715

ABS/PC black material of case

self-extinguishing to UL rating 94 V-0

screw-terminals terminals 4 mm² max. wire cross-section enclosure code IP 40 case IP 20 terminals

dielectric test

2210 V all circuits to case

3536 V measuring circuit and auxiliary voltage to output

1330 V currents to each other and to voltages

operating voltage 300 V (rated voltage phase to zero)

class of protection measurement category CAT III pollution level

45 mm x 80 mm x 115 mm dimensions WxHxI

weight approx. 0.27 kg

Inputs

sinusoidal AC current and input rating sinusoidal AC voltage input quantity phase angle φ (power factor)

version

single phase AC

3-phase 3-wire balanced load system

measuring ranges >

-37° ... 0 ... 37° -60° ... 0 ... 60° corresponds to $\cos \varphi$: cap 0.8 ... 1 ... 0.8 ind corresponds to $\cos \varphi$: cap 0.5 ... 1 ... 0.5 ind rated input voltage U_{EN} ▶ rated input current I_{EN} ▶

65 V, 100 V, 110 V, 240 V, N/1 A

400 V, 415 V, 440 V, 500 V N/5 A

operating voltage 519 V max. modulation range 1.2 U_{EN} or 1.2 I_{EN}

overload limits 1.2 U_{EN}, 1.2 I_{EN} continuously 2 U_{EN}, 10 I_{EN} max. 1 s

frequency range 48 ... 62 Hz •

approx. 0.25 mA each voltage circuit power consumption

. 0.01 Ω each current circuit

Outputs

current output

voltage output

output current load independent DC current (0...20 mA) ▶

rated current 0 ... 20 mA or 4 ... 20 mA I_{AN}

 R_A 0 ... 10 V / I_{AN} load range

current limitation to approx. 120% of end value to 100 ... 140% of end value on request •

impressed DC voltage (0...10 V) ▶ output voltage

 $U_{AN} = 0 \dots 10 \ V \ or \ 2 \dots 10 \ V$ rated voltage

load $\geq 4 \text{ k}\Omega$ R_A

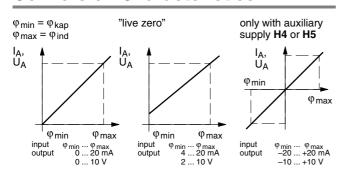
load error ≤ 0.1% based on 50% load change

≤ 1%_{rms} residual ripple approx. 500 ms response time idling voltage ≤ 15 V

Also, bipolar output quantities are possible using power supply units H4 and H5 (e.g. -20 ... 0 ... 20 mA). ♦

If the voltage output only will be used, short-circuit the current output!

Input and outputs are galvanically isolated.


♦ for other ratings refer to Extras

Transducers for Phase Angle (cos φ)

Conversion Characteristics

Auxiliary Supply

power supply unit	auxiliary voltage	power consumption
H1 *)	230 V~ (195 253 V), 48 62 Hz	< 7 VA
H2	115 V~ (98 126 V), 48 62 Hz	< 4 VA
H3	24 V= (20 72 V)	< 3 VA
H4	20 100 V= or 20 70 V~	< 3 VA
H5	90 357 V= or 65 253 V~	< 4 7 VA

*) standard

Galvanic isolation between input, output and auxiliary voltage

Accuracy at Reference Conditions

class 0.5 ($\pm 0.5\%$ of end value) accuracy

temperature coefficient ≤ 0.01%/K

valid for standard products and a life-period of 1 year maximum

reference conditions

 $U_{EN} \pm 0.5\%$ input voltage power factor $\cos \varphi = 1$ 50 ... 60 Hz frequency

sine wave, distortion factor ≤ 0.1% wave form

U_{HN} ±1%, 50 Hz auxiliary voltage 23°C ±1K ambient temperature warm-up >5 min

Environmental

climatic suitability operating

climatic class 3 to VDE/VDI 3540 sheet 2

-10 ... +55°C temperature range

-25 ... +65°C storage temperature range

relative humidity ≤75% annual average, non-condensing

Rules and Standards

DIN EN 60 529 Enclosure codes by housings (IP-code)

DIN FN 60 688 Electrical measuring transducers

converting AC quantities into analog or digital signals

DIN EN 60 715 Dimensions of low voltage switching devices: standardized DIN rails for mechanical fixation

of electrical devices in switchgears

DIN EN 61 010-1 Safety requirements for electrical measuring, control and laboratory equipment

Part 1: General requirements

DIN EN 61 326-1 Electrical equipment for measurement, con-

trol and laboratory use - EMC requirements

Part 1: General requirements

VDE/VDI 3540 sheet 2 Reliability of measuring and control

Data Sheet

equipment (classification of climates for

equipment and accessories)

Extras (on Request)

input ratings

measuring range to be specified in the range -180° ... 0 ... 180°

corresponds to $\cos \phi$:

ind. (output) –1 ... 1 ... –1 cap. (output) (unique measuring range –175° to + 175°)

deviating from standard inputs rated current IFN

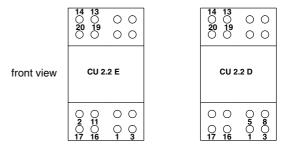
ranging from 0 ... (0.5 A ... I_{EN} ... 5 A)

deviating from standard inputs rated voltage U_{EN}

ranging from 0 ... (50 V ... U_{EN} ... 519 V)

on request frequency range

output ratings


output current limitation to 100 ... 140% of end value

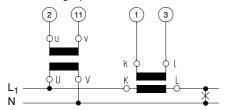
switching output

 $RS232\,and\,RS485\,interface\,(to\,be\,used\,alternatively)\,to\,digitally\,inquire$

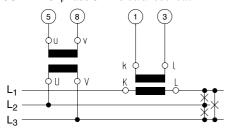
different measuring values

Terminals

	î	i
terminal	CU 2.2 E	CU 2.2 D
1	I _E L ₁	I _E L ₁
2	U _E L ₁	_
3	I _E L ₁	I _E L ₁
5	_	U _E L ₂
8	_	U _E L ₃
11	U _E N	_
13	U _A (+)	U _A (+)
14	U _A (–)	U _A (–)
16	U _H L ₁ (+)	U _H L ₁ (+)
17	U _H N (–)	U _H N (–)
19	I _A (+)	I _A (+)
20	I _Δ (–)	I _Δ (–)

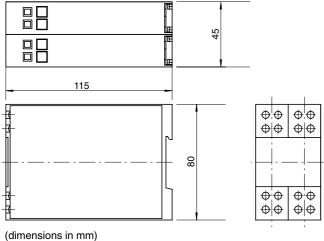

current input ŪΕ voltage input

The numbers on the terminals conform to details in connection diagrams (refer to DIN 43 807).


current output U_A voltage output auxiliary voltage input U_H

Connections

input CU 2.2 E single phase AC



input CU 2.2 D 3-phase 3-wire balanced load

Dimensions

side view front view

ordering example

CU 2.2 D	250/5	400	2	F50	11	H1

phase angle transducer for 3-phase 3-wire balanced load system, input current 250/5 A, input voltage 400 V, measuring range -60° ... 0 ... 60° , frequency 50/60 Hz, output 0 ... 20 mA and 0 ... 10 V, auxiliary supply 230 V AC

Ordering Guide

type	transducer
	physical quantity
CU 2.2	phase angle (power factor)
	version
E	single-phase AC
D	3-phase 3-wire system balanced load
	current input
N/1	1 A
N/5	5 A
xx	special current input **)
	voltage input
65	65 V
100	100 V
110	110 V
240	240 V
400	400 V
415	415 V
440	440 V
500	500 V
xxx	special voltage input **)
	measuring range
1	–37° 0 37°
	(corresponds to cos ϕ : cap 0.8 1 0.8 ind)
2	-60° 0 60°
	(corresponds to cos ϕ : cap 0.5 1 0.5 ind)
0	to be specified in the range -180° 0 180° **)
	(corresp. to $\cos \varphi$ (output): ind. $-1 \dots 1 \dots -1$ cap.)
	(unique measuring range –175° to + 175°)
	input frequency range
F50	48 62 Hz (50/60 Hz) *)
Fxxx	special frequency **)
	output
11	020 mA and 0 10 V
12	010 mA and 0 10 V
13	0 5 mA and 0 10 V
14	420 mA and 2 10 V
15	–20 0 20 mA and –10 0 10 V ***)
10	special output **)
	auxiliary supply
H1	AC 230 V (195 253 V), 48 62 Hz *)
H2	AC 115 V (85 126 V), 48 62 Hz
H3	DC 24 V (20 72 V)
H4	DC 20 100 V / AC 20 70 V
H5	DC 90 357 V / AC 65 253 V

standard

on request, please clearly add the desired specifications.

- specifications subject to change without notice; date of issue 12/10 -

only available with H4 or H5

Weigel Meßgeräte GmbH

Postfach 720 154 • 90241 Nürnberg • Phone: 0911/42347-0 Erlenstraße 14 • 90441 Nürnberg • Fax: 0911/42347-39 Phone: 0911/42347-94 Sales: http://www.weigel-messgeraete.de Internet: e-mail: vertrieb@weigel-messgeraete.de

