

width 45 mm

Data Sheet

Transducers for Active or **Reactive Power**, **Fixed Calibration**

069.4e

Application

The compactly designed **Series 2.3** power transducers convert all forms of **active or reactive power** into a load independent DC current or an impressed DC voltage. The output signal can be indicated, recorded and/or used for controlling directly at the test point or in measuring facilities located far away.

The range of active or reactive power transducers includes all types both for single-phase AC (EW/EB 2.3) and 3-phase 3-wire or 3-phase 4-wire power supply systems of balanced or unbalanced loads (DGW/ B 2.3, DUW/B 2.3 resp. VGW/B 2.3, VUW/B 2.3).

The **Series 2.3** power transducer have a factory-set calibration factor which must be stated when ordering.

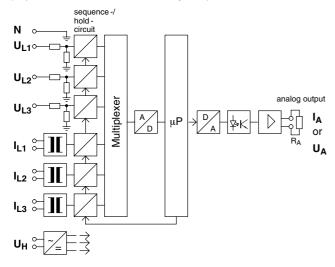
It is possible to connect more than one indicator, recorder, controller, computer etc. to the output circuit provided the total impedance does not exceed the rating.

Power supply is effected by a separate auxiliary supply input. Inputs, output and auxiliary supply input are **galvanically isolated from each other**. The output is **short-circuit proof** and **safe against idling**.

The transducers comply with safety requirements and are tested for interference immunity.

The transducers are designed to be mounted in machines/systems. Regulations for installation of electrical systems and equipment have to be observed.

Operating Principle


Transformers in the current circuits and dividers in the voltage circuits adapt the signals which are transferred to an A/D converter via multiplexer.

A **true 3 - phase** conversion of the current and voltage inputs guarantees an absolutely correct measuring results within the specified accuracy class, independent of the operating conditions of the power supply network.

A microprocessor analyzes and multiplies the digitalized signal in real time. Depending on application and network structure, the required output value is computed and transferred to a D/A converter which passes the signal via an optocoupler for galvanic isolation to the output stages. The output amplifier issues the output quantity as a load independent DC current or an impressed DC voltage.

Block Circuit Diagram

(3-phase 4-wire unbalanced load system)

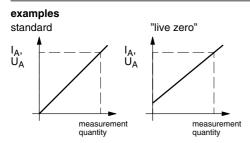
General Technical Data

case details		clamping to TH DIN EN 60 715		
material of case	ABS/PC black self-extinguishing to UL rating 94 V–0			
terminals	screw-terminals			
wire cross-section	4 mm ² max.			
enclosure code	IP 40 case IP 20 terminals			
dielectric test 2210 V all circuits to o 3536 V measuring cir 1330 V currents to ea	cuit and auxiliary		ut	
operating voltage	300 V (rated mains voltage phase to zero)			
class of protection	II			
measuring category	CAT III			
pollution level	2			
dimensions WxHxL	45 mm x 80 mr	n x 115 mm		
weight	EW/EB 2.3 DGW/B 2.3 VGW/B 2.3	DUW/B 2.3	VUW/B 2.3	
approx.	0.24 kg	0.26 kg	0.28 kg	

Inputs

input quantity	sinusoidal AC current a sinusoidal AC voltage	nd	
measured quantity	P_E or Q_E – active or rea	ctive power	
type		active power	reactive power
single-phase AC syster 3-phase 3-wire syster 3-phase 4-wire syster 3-phase 3-wire syster 3-phase 4-wire syster	i balanced load i balanced load i unbalanced load	EW 2.3 DGW 2.3 VGW 2.3 DUW 2.3 VUW 2.3	EB 2.3 DGB 2.3 VGB 2.3 DUB 2.3 VUB 2.3
measuring range	$0 \dots P_N$ P_N =calibration factor \cdot F	s	
The apparent power P ₅ transformers:	s is calculated from prim	ary ratings of	of current
single phase AC (calibration factor=0.87)	$P_{S} = U \cdot I$		
3-phase system (calibration factor=0.72)	$P_{S} = \sqrt{3} \cdot U \cdot I$		
rated input voltage	U _{EN} 0230 V/04	400 V	
rated input current	$I_{EN} 0 1 A / 0 5 A$	(also for use	with CT)
modulation range	1.2 U _{EN} <i>or</i> 1.2 I _{EN}		
overload limits	$\begin{array}{c} 1.2 \ U_{EN}, 1.2 \ I_{EN} \ continu \\ 2 \ U_{EN}, 10 \ I_{EN} \ max. 1 \end{array}$,	
frequency range	48 62 Hz		
power consumption	approx. 0.25 mA each v I^2 \cdot 0.01 Ω each current		it

Outputs


current output

output current rated current load range current limitation	I _A I _{AN} R _A	load independent DC current (020 mA) 020 mA or 420 mA 010 V / I_{AN} to approx. 120% of end value
voltage output output voltage rated voltage load	U _A U _{AN} R _A	impressed DC voltage (0 10 V) 0 10 V or 2 10 V \geq 4 k Ω
load error residual ripple		\leq 0.1% based on 50% load change \leq 1% $_{rms}$

re response time idling voltage

ad change approx. 500 ms ≤ 15 V

Conversion Characteristics

Auxiliary Supply

power supply unit	auxiliary voltage	power consumption
H1 *)	230 V~ (195 253 V), 48 62 Hz	<7 VA
H2	115 V~ (98 126 V), 48 62 Hz	< 4 VA
НЗ	24 V= (20 72 V)	< 3 VA

*) standard

Galvanic isolation between input, output and auxiliary voltage

Data Sheet

Transducers for Active or **Reactive Power**, **Fixed Calibration**

Accuracy at Reference Conditions

class 0.5 (±0.5% of end value) accuracy temperature coefficient ≤ 0.02%/K valid for standard products and a life-period of 1 year maximum

−10 ... +55°C

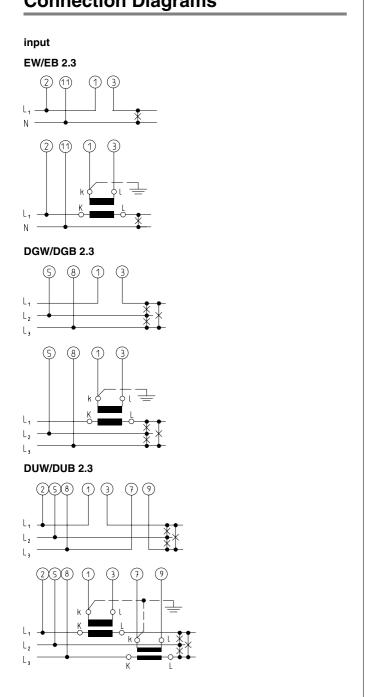
reference conditions

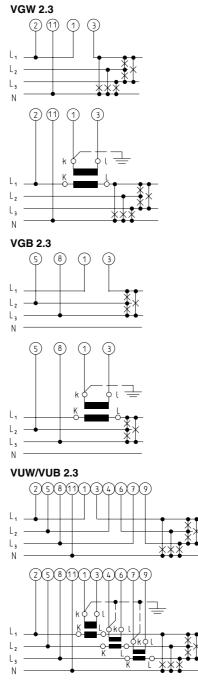
input voltage power factor frequency wave form auxiliary voltage ambient temperature warm-up

U_{EN} ±0.5% $\cos \phi = 1$ 50 ... 60 Hz sine curve, distortion factor $\leq 0.1\%$ U_{HN} ±1%, 48 ... 62 Hz 23°C ±1K ≥5 min

Environmental

climatic suitability operating temperature range storage temperature range relative humidity

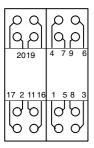

–25 ... +65°C


climatic class 3 to VDE/VDI 3540 sheet 2

≤ 75% annual average, non-condensing

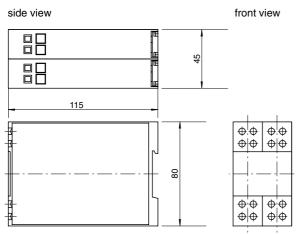
Rules and Standards

DIN EN 60 529 DIN EN 60 688	Enclosure codes by housings (IP-code) Electrical measuring transducers converting AC quantities into analog or digital signals
DIN EN 60 715	Dimensions of low voltage switching devices: standardized DIN rails for mechanical fixation of electrical devices in switchgears
DIN EN 61 010-1	Safety requirements for electrical measuring, control and laboratory equipment Part 1: General requirements
DIN EN 61 326-1	Electrical equipment for measurement, con- trol and laboratory use – EMC requirements Part 1: General requirements
VDE/VDI 3540 sheet 2	Reliability of measuring and control equipment (classification of climates for equipment and accessories)



Connection Diagrams

Terminal Assignment


No.	Function	Transducer	EW EB VGW	DGW DGB VGB	DUW DUB	VUW VUB
1 1	l⊨ L1	input current IN		X	х	х
ġ.		input current OUT	X X	X X	X X	Ŷ
4	I _F L2	input current IN	_	_	_	****
6	IF L2	input current OUT	-	-	-	Х
7	I _F L3	input current IN	-	-	××	Х
9 2 5 8	I _E L3	input current OUT	- X	-	Х	Х
2	U _E L1	input voltage	Х	-	X X X	Х
5	U _E L2	input voltage	-	Х	Х	Х
	U _E L3	input voltage	-	Х	Х	Х
11	U _E N	input voltage	Х	-	-	Х
19	$I_A/U_A(+)$	positive output	× × × ×	- ×× - ×××	Х	Х
20	I _A /U _A (–) U _H L1(+)	negative output	Х	Х	X X	Х
16	U _H L1(+)	auxiliary voltage	Х		Х	Х
17	U _H N (–)	auxiliary voltage	Х	Х	Х	Х
l _E	currer	nt input				

ΰ_E

voltage input The terminal numbering correspond to details in the connection diagrams (to DIN 43 807).

- current output
- I_A U_A voltage output
- auxiliary voltage input Uн

Dimensions

(dimensions in mm)

Data Sheet

Transducers for Active or **Reactive Power**, **Fixed Calibration**

Preference Types

The table below shows a listing of standard measuring ranges for voltages of 230/400 V with current ratings of N/1A or N/5A:

I _{EN} [A]		P _{EN} [kW], Q _{EN} [kVar]		
		type EW 2.3 EB 2.3	types DGW/B 2.3 VGW/B 2.3 DUW/B 2.3 VUW/B 2.3	
		calibration factor 0.87	calibration factor 0.72	
directly	1/5	0.2	0.5	
connected 1 5/1 10/1	directly connected 5 10/5	1 2	2.5 5	
15/1	15/5	3	7.5	
20/1	20/5	4	10	
25/1	25/5	5	12.5	
30/1	30/5	6	15	
40/1	40/5	8	20	
50/1	50/5	10	25	
60/1	60/5	12	30	
75/1	75/5	15	37.5	
80/1	80/5	16	40	
100/1	100/5	20	50	
120/1	120/5	24	60	
150/1	150/5	30	75	
200/1	200/5	40	100	
250/1	250/5	50	125	
300/1	300/5	60	150	
400/1	400/5	80	200	
500/1	500/5	100	250	
600/1	600/5	120	300	
750/1	750/5	150	375	
800/1	800/5	160	400	
1000/1	1000/5	200	500	
and values of next decades	and values of next decades	and values of next decades	and values of next decades	

The transducers of this preference list offer advantages on site due to the fact that they are calibrated to exactly the same secondary current ratings (calibration factor 0.87 resp. 0.72).

This means, the transducers are interchangeable within the current transformer ratings listed and Watts resulting thereof. They will not have to be recalibrated. Only the type label should be corrected accordingly.

Example:

For a supply system of 230/400 V and a primary transformer current of 250 A, the calculated power rating will be 125 kW for a transducer VUW 2.3.

The apparent power (cos ψ =1) on the basis of these system data would be:

$$\begin{array}{l} \mathsf{P}_{S} = \mathsf{U} \cdot \mathsf{I} \cdot \sqrt{3} \quad \cdot \ \cos \psi \\ \mathsf{P}_{S} = 400 \ \mathsf{V} \cdot 250 \ \mathsf{A} \cdot \sqrt{3} \ \cdot 1 \\ \mathsf{P}_{S} = 173 \ \mathsf{kW} \end{array}$$

multiplied by a calibration factor 0.72 results in P_{EN} = 125 kW (refer to table).

Changing the transformer connection to 400 A for instance, power rating results from: $P_{EN} = U \cdot I \cdot \sqrt{3} \cdot 0.72$

 $\mathsf{P}_{\mathsf{EN}} = 400 \; \mathsf{V} \cdot 400 \; \mathsf{A} \cdot \sqrt{3} \cdot \; 0.72$ $P_{EN} = 200 \text{ kW}$ (refer to table above)

Ordering Guide

type	Transducers for Watts or VARs
	Active Power
EW 2.3	single-phase AC
DGW 2.3	3-phase 3-wire system balanced load
DUW 2.3	3-phase 3-wire system unbalanced load
VGW 2.3	3-phase 4-wire system balanced load
VUW 2.3	3-phase 4-wire system unbalanced load
	Reactive Power
EB 2.3	single-phase AC
DGB 2.3	3-phase 3-wire system balanced load
DUB 2.3	3-phase 3-wire system unbalanced load
VGB 2.3	3-phase 4-wire system balanced load
VUB 2.3	3-phase 4-wire system unbalanced load
	current input
N/1	1 A
N/5	5 A
	voltage input
230	230 V
400	400 V
	measuring range
xxx	to be specified (refer to preference types)
	input frequency range
F50	48 62 Hz (50/60 Hz)
	output
1	0 20 mA
4	4 20 mA
7	0 10 V
8	2 10 V
	response time
T1	500 ms
	auxiliary supply
H1	AC 230 V (195 253 V), 48 62 Hz [*])
H2	AC 115 V (98 126 V), 48 62 Hz
Н3	DC 24 V (20 72 V)
*) standard	

ordering example

DGW 2.3	250/5	400	125kW	F50	1	H1
---------	-------	-----	-------	-----	---	----

active power transducer for 3 - phase 3 - wire system, balanced load, input current 250/5 A, input voltage 400 V, measuring range 0 ... 125 kW, frequency 50/60 Hz, output 0 ... 20 mA, auxiliary supply 230 V AC

Weigel Meßgeräte GmbH

Postfach 720154	• 90241 Nürnberg • Phone: 0911/42347-0
Erlenstraße 14 •	90441 Nürnberg • Fax: 0911/42347-39
Sales:	Phone: 0911/42347-94
Internet:	http://www.weigel-messgeraete.de
e–mail:	vertrieb@weigel-messgeraete.de

- specifications subject to change without notice; date of issue 12/10 -

