

Transducers for Active or Reactive Power

EW 2.2 DGW2.2 VGW2.2 DUW2.2 EB 2.2 DGB2.2 VGB2.2 DUB2.2 VUB2.2

transducer case width 45 mm

Application

The compact designed Power Transducer **Series 2.2** convert all forms of **active or reactive power** polarity - true into a load independent DC current and an impressed DC voltage. The output signal can be indicated, recorded and/or used for controlling directly at the test point or in measuring facilities located far away.

The range of active or reactive power transducers includes all types both for single-phase AC (EW/EB 2.2) and 3-phase 3-wire or 3-phase 4-wire power supply systems of balanced or unbalanced loads (DGW/ B 2.2, DUW/B 2.2 resp. VGW/B 2.2, VUW/B 2.2).

It is possible to connect more than one indicator, recorder, controller, computer etc. to the output circuit provided the total impedance does not exceed the rating.

Power supply is effected by a separate auxiliary voltage input. Inputs, output and auxiliary voltage input are **galvanically isolated from each other**. The output is **short-circuit proof** and **safe against idling**.

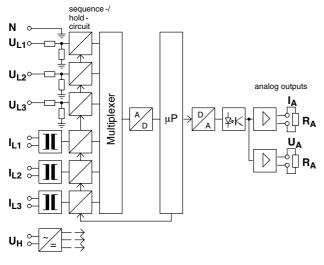
The transducers comply with safety requirements and are tested for interference immunity.

The transducers are designed to be mounted in machines/systems. Regulations for installation of electrical systems and equipment have to be observed.

Operating Principle

Transformers in the current circuits and dividers in the voltage circuits adapt the signals which are transferred to an A/D converter via multiplexer.

A **true 3 - phase** conversion of the current and voltage inputs guarantees an absolutely correct measuring results within the specified accuracy class, independent of the operating conditions of the power supply network.


A microprocessor analyzes and multiplies the digitalized signal in real time. Depending on application and network structure, the required output value is computed and transferred to a D/A converter which passes the signal via an optocoupler for galvanic isolation to the output stages. The output amplifier issues the output quantity as a load independent DC current and an impressed DC voltage.

The outputs must not be connected to each other.

Optionally, the measured value can be inquired via a **serial interface** (RS232/RS485), also switching signal can be produced. •

Block Circuit Diagram

(3-phase 4-wire unbalanced load system)

General Technical Data

case details		clamping to TH DIN EN 60 715	
material of case	ABS/PC black self - extinguish	ing to UL rating	94 V–0
terminals	screw-termina	ls	
wire cross-section	4 mm ² max.		
enclosure code	IP 40 case IP 20 terminals		
dielectric test 2210 V all circuits to c 3536 V measuring circ 1330 V currents to ead	cuit and auxiliary		ut
operating voltage	300 V (rated vo	oltage phase to z	zero)
class of protection	II		
measurement category	CAT III		
pollution level	2		
dimensions WxHxL	45 mm x 80 mm x 115 mm		
weight	EW/EB 2.2 DGW/B 2.2 VGW/B 2.2	DUW/B 2.2	VUW/B 2.2
approx.	0.27 kg	0.29 kg	0.31 kg

Inputs

•			
input quantity	sinusoidal AC curren sinusoidal AC voltage		
measurable quantity	P _E active or reactive pov	wer	
type	active power	reactive power	
single-phase AC system 3-phase 3-wire system balanced load 3-phase 4-wire system balanced load 3-phase 3-wire system unbalanced load 3-phase 4-wire system unbalanced load		EW 2.2 DGW 2.2 VGW 2.2 DUW 2.2 VUW 2.2	EB 2.2 DGB 2.2 VGB 2.2 DUB 2.2 VUB 2.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
The apparent power P	o is calculated from prim	any ratings of c	urrent and

The apparent power P_{S} is calculated from primary ratings of current and voltage transformers:

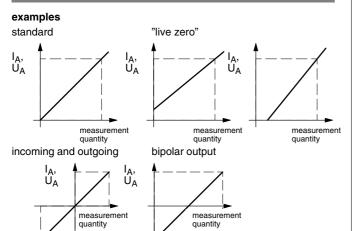
1.2 U_{EN}, 1.2 I_{EN} continuously 2 U_{EN}, 10 I_{EN} max. 1 s 48 ... 62 Hz \blacklozenge approx. 0.25 mA each voltage circuit

0.01 Ω each current circuit

frequency range 4 power consumption a

Data Sheet

Transducers for Active or Reactive Power


Outputs

current output		
output current	IA	load independent DC current (020 mA) ♦
rated current	I _{AN}	0 20 mA or 4 20 mA
load range	R _A	0 10 V / I _{AN}
current limitation		to approx. 120% of end value to 100 140% of end value on request ♦
voltage output		
output voltage	U _A	impressed DC voltage (010 V) ♦
rated voltage	U _{AN}	0 10 V or 2 10 V
load	R _A	\ge 4 k Ω
load error		\leq 0.1% based on 50% load change
residual ripple		≤1% _{rms}
response time		approx. 500 ms
idling voltage		≤ 15 V

Also, bipolar output quantities are possible using power supply units H4 and H5 (e.g. $-20 \dots 0 \dots 20$ mA).

If the voltage output only will be used, short-circuit the current output ! Input and outputs are galvanically isolated.

Conversion Characteristics

Auxiliary Supply

power supply unit	auxiliary voltage	power consumption
H1 *)	230 V~ (195 253 V), 48 62 Hz	<7 VA
H2	115 V~ (98 126 V), 48 62 Hz	< 4 VA
H3	24 V= (20 72 V)	< 3 VA
H4	20 100 V= or 20 70 V~	< 3VA
H5	90 357 V= or 65 253 V~	< 4 7 VA

*) standard

Galvanic isolation between input, output and auxiliary voltage

extras on request

Accuracy at Reference Conditions

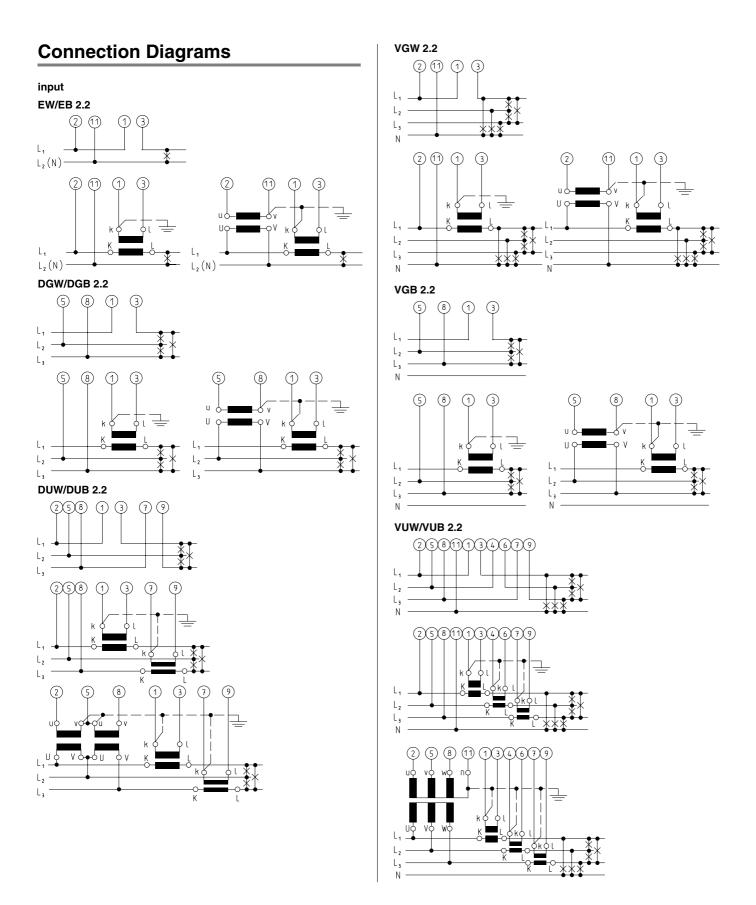
accuracyclass 0.5 ($\pm 0.5\%$ of end value)temperature coefficient $\leq 0.02\%/K$ valid for standard products and a life-period of 1 year maximum

reference conditions

input voltage	U _{EN} ±0.5
power factor	cos φ =1
frequency	50 60 H
wave form	sine curve
auxiliary voltage	U _{HN} ±1%
ambient temperature	23°C ±1k
warm-up	≥5 min

 $\begin{array}{l} J_{EN} \pm 0.5\% \\ \cos \phi = 1 \\ 50 \ ... \ 60 \ Hz \\ \text{sine curve, distortion factor} \leq 0.1\% \\ J_{HN} \pm 1\%, \ 48 \ ... \ 62 \ Hz \\ 23 \ ^{\circ}C \ \pm 1K \\ 55 \ \text{min} \end{array}$

Environmental

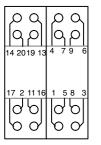

climatic suitability	climatic class 3 to VDE/VDI 3540 sheet 2
operating	−10 +55°C
temperature range	
storage	–25 +65°C
temperature range	
relative humidity	\leq 75% annual average, non-condensing

Rules and Standards

DIN EN 60 529 DIN EN 60 688	Enclosure codes by housings (IP-code) Electrical measuring transducers converting AC quantities into analog or digital signals
DIN EN 60 715	Dimensions of low voltage switching devices: standardized DIN rails for mechanical fixation of electrical devices in switchgears
DIN EN 61 010-1	Safety requirements for electrical measuring, control and laboratory equipment Part 1: General requirements
DIN EN 61 326-1	Electrical equipment for measurement, con- trol and laboratory use – EMC requirements Part 1: General requirements
VDE/VDI 3540 sheet 2	Reliability of measuring and control equipment (classification of climates for equipment and accessories)

Extras (on Request)

- with buckled characteristic curve
- with switching output
- with additional galvanically isolated output to measure a second measurable quantity
- with output limitation
- with RS232 and RS485 interface (to be used alternatively) to digitally inquire different measuring values
- frequency range 15 ... 18 Hz, 98 ... 102 Hz



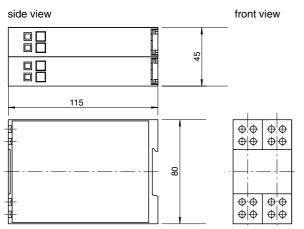
Data Sheet

Transducers for Active or **Reactive Power**

Terminal Assignment

No.	Function	Transducer	EW EB VGW	DGW DGB VGB	DUW DUB	VUW VUB
1	l _F L1	input current IN	X		х	Х
3		input current OUT	x	X X	X X	Ŷ
4	I _E L2	input current IN		_	_	Ŷ
6	i _E L2	input current OUT	- - - X	_	_	*****
7	IF L3	input current IN	-	-	- ×××××	Х
9	I _E L3	input current OUT	-	-	Х	Х
9 2 5 8	U _E L1	input voltage	Х	-	Х	Х
5	U _E L2	input voltage	-	X X	Х	Х
	U _E L3	input voltage	-	Х	Х	Х
11	U _E N	input voltage	Х	-	-	Х
13	U _A (+)	positive output	X	X	Х	X
14	U _A (–)	negative output	Х	Х	Х	Х
19	I _A (+)	positive output	X	X	Х	X
20		negative output	××××××		× × × × × ×	*****
16	U _H L1(+)	auxiliary voltage	X	X	X	X
17	U _H N (–)	auxiliary voltage	Х	X	X	X

I_E U_E current input


voltage input

The terminal numbering correspond to details

in the connection diagrams (to DIN 43 807).

- current output I_A U_A
- voltage output
- auxiliary voltage input U_H

Dimensions

(dimensions in mm)

Preference Types

The table below shows a listing of standard measuring ranges for voltages of 230/400 V with current ratings of N/1A or N/5A:

I _{EN} [A]		P _{EN} [kW]			
		type EW 2.2 EB 2.2	types DGW/B 2.2 VGW/B 2.2 DUW/B 2.2 VUW/B 2.2		
		calibration factor 0.87	calibration factor 0.72		
directly	1/5	0.2	0.5		
connected 1 5/1	directly connected 5	1 2	2.5 5		
10/1	10/5	2	5 7.5		
15/1	15/5	4	10		
20/1	20/5	4 5	12.5		
25/1 30/1	25/5 30/5	5	12.5		
30/1 40/1	30/5 40/5	8	20		
40/1 50/1		8 10	-		
50/1 60/1	50/5 60/5	10	25 30		
75/1		12	37.5		
75/1 80/1	75/5	16	40		
100/1	80/5 100/5	20	50		
		20 24	60		
120/1	120/5	24 30	75		
150/1 200/1	150/5				
/	200/5	40	100 125		
250/1	250/5	50			
300/1	300/5	60	150		
400/1	400/5	80	200		
500/1	500/5	100	250		
600/1	600/5	120	300		
750/1	750/5	150	375		
800/1	800/5	160	400		
1000/1	1000/5	200	500		
and values of next decades					

The transducers of this preference list offer advantages on site due to the fact that they are calibrated to exactly the same secondary current ratings (calibration factor 0.87 resp. 0.72).

This means, the transducers are interchangeable within the current transformer ratings listed and Watts resulting thereof. They will not have to be recalibrated. Only the type label should be corrected accordingly.

Example:

For a supply system of 230/400 V and a primary transformer current of 250 A, the calculated power rating will be 125 kW for a transducer VUW 2.2.

The apparent power (cos ψ =1) on the basis of these system data would be:

$$\begin{array}{l} \mathsf{P}_{\mathsf{S}} = \mathsf{U} \cdot \mathsf{I} \cdot \sqrt{3} \quad \cdot \ \cos \psi \\ \mathsf{P}_{\mathsf{S}} = 400 \ \mathsf{V} \cdot 250 \ \mathsf{A} \cdot \sqrt{3} \ \cdot 1 \\ \mathsf{P}_{\mathsf{S}} = 173 \ \mathsf{kW} \end{array}$$

multiplied by a calibration factor 0.72 results in P_{EN} = 125 kW (refer to table).

Changing the transformer connection to 400 A for instance, power rating results from: $P_{EN} = U \cdot I \cdot \sqrt{3} \cdot 0.72$

 $P_{EN} = 400 V \cdot 400 A \cdot \sqrt{3} \cdot 0.72$ $P_{EN} = 200 \text{ kW}$ (refer to table above)

Ordering Guide

type	Transducers for Watts or VARs
	Active Power
EW 2.2	single-phase AC
DGW 2.2	3-phase 3-wire system balanced load
DUW 2.2	3-phase 3-wire system unbalanced load
VGW 2.2	3-phase 4-wire system balanced load
VUW 2.2	3-phase 4-wire system unbalanced load
	Reactive Power
EB 2.2	single-phase AC
DGB 2.2	3-phase 3-wire system balanced load
DUB 2.2	3-phase 3-wire system unbalanced load
VGB 2.2	3-phase 4-wire system balanced load
VUB 2.2	3-phase 4-wire system unbalanced load
	current input
N/1	1 A
N/5	5 A
xx	special current input **)
	voltage input
65	65 V
100	100 V
110	110 V
240	240 V
400	400 V
415	415 V
440	440 V
500	500 V
xxx	special voltage input **)
	measuring range
XXX	to be specified (refer to preference types)
	input frequency range
F50	48 62 Hz (50/60 Hz) *)
F16	15 18 Hz (16 ² / ₃ Hz)
F100	98 102 Hz (100 Hz)
Fxxx	special frequency **)
	output
11	0 20 mA and 0 10 V
12	0 10 mA and 0 10 V
13	0 5 mA and 0 10 V
14	4 20 mA and 2 10 V
15	–20 0 20 mA and –10 0 10 V ***)
10	special output **)
	response time
T1	500 ms *)
ТО	special rating **)

	auxiliary supply
H1	AC 230 V (195 253 V), 48 62 Hz *)
H2	AC 115 V (98 126 V), 48 62 Hz
НЗ	DC 24 V (20 72 V)
H4	DC 20 100 V / AC 20 70 V
H5	DC 90 357 V / AC 65 253 V

standard <u>)</u>

on request, please clearly add the desired specifications. only available with **H4** or **H5** ***)

ordering example

	VGW 2.2	250/5	400	125kW	F50	11	H1
--	---------	-------	-----	-------	-----	----	----

Watt transducer (active power), input current 250/5 A, input voltage 400 V, measuring range 0 ... 125 kW, frequency 50/60 Hz, output 0 ... 20 mA and 0 ... 10 V, auxiliary supply 230 V AC

Weigel Meßgeräte GmbH

Postfach 720154 • 90241 Nürnberg • Phone: 0911/42347-0 Erlenstraße 14 • 90441 Nürnberg • Sales: Internet: e-mail:

Fax: 0911/42347-39 Phone: 0911/42347-94 http://www.weigel-messgeraete.de vertrieb@weigel-messgeraete.de - specifications subject to change without notice; date of issue 12/10 -

